
You Should Be Using Redis
Session 302

John Hobbs

I’m John Hobbs and this is “You
Should Be Using Redis”

I’m the developer, ops, etc. at Pack.
We use Redis extensively there, and I
love it.

If you have questions or comments
during this presentation, please ask
them.

Redis is an open source, BSD licensed,
advanced key-value cache and store. It is often
referred to as a data structure server since keys
can contain strings, hashes, lists, sets, sorted
sets, bitmaps and hyperloglogs.

“

redis.io ”
key-value cache

data structure server

As you might imagine, this talk is
about redis. But what is redis?

The two key points are that it’s a key-
value cache, and a data structure
server.

Why Redis?

So why redis?

• Simple, small, well documented
• It speaks plain text
• It is fast
• Built in replication/clustering
• Transactions
• Lua Scripting
• Pub/Sub support
• Geospatial indexing (SOON!)

Why Redis?

There are 59 C files in the distribution. No (external)
dependencies. 20s to build all server and tools on
this machine. Simplicity leads to easy to deploy and
configure.

Every command has examples and a big-O notation
of complexity.

You can talk to it over telnet if you want.

Redis exists in memory, with disk storage an option.
As such, it’s fast.

Redis can replicate to disk, has clustering with
sharding and automatic failover.

You can do atomic transactions, and pipeline multiple
commands for speed.

Lastly, you can extend redis by using the built in Lua
scripting.

For this talk I’m going to try to cover realistic use
cases first, then edge out into some of the other
details, like sentinel. I am NOT advocating you
replace your relational database with redis. We want
to find ways to leverage redis in your existing stack
and let it do what it is best at.

This talk is highly informed by a blog post from
antirez which I will link to at the end.

Get It

$ wget http://download.redis.io/releases/redis-3.0.4.tar.gz
$ tar -zxf redis-3.0.4.tar.gz
$ cd redis-3.0.4/
$ make
$ cd src
$./redis-server
…snip…
8724:M 08 Sep 23:07:42.479 # Server started, Redis version 3.0.4

http://redis.io/download

I’d encourage you to grab a copy of
redis and follow along if you’d like to.

Redis builds into it’s own source
directory so it’s nice and clean.

If you want to go system wide, it’s in
most linux repos and available on
Homebrew. YMMV. However, 3.0.4 is
only a few days old, so I recommend
you just grab the source.

If you are on Windows, there is an
unsupported fork by Microsoft, look
for MSOpenTech on github. The install
from there will be a bit messier of
course.

Caching

The first use case is also probably the
most obvious. Use it as a cache.

Redis has LRU eviction when memory
gets tight, as well as millisecond
expiration resolution.

Other benefits over memcached are
disk persistence and larger value size
(512MB vs 1MB). At least comparable
in speed, probably faster http://
oldblog.antirez.com/post/update-on-
memcached-redis-benchmark.html

127.0.0.1:6379> GET HDC15
"Heartland Developer Conference 2015"
127.0.0.1:6379>

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> SET HDC15 "Heartland Developer Conference 2015"
OK
127.0.0.1:6379>

SET, GET & EXPIRE

127.0.0.1:6379> EXPIRE HDC15 5
(integer) 1
127.0.0.1:6379> 127.0.0.1:6379> GET HDC15
(nil)
127.0.0.1:6379>

The three most basic commands in
redis are SET, GET, and EXPIRE.

These do exactly what you think they
do. GET a value for a key, and SET
one. In the case of GET/SET, the value
stored is a string. Almost everything in
redis boils down to strings.

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> SET HDC15 2015
OK
127.0.0.1:6379>

TTL & PERSIST

127.0.0.1:6379> EXPIRE HDC15 200
(integer) 1
127.0.0.1:6379> 127.0.0.1:6379> TTL HDC15
(integer) 194
127.0.0.1:6379> 127.0.0.1:6379> PERSIST HDC15
(integer) 1
127.0.0.1:6379> 127.0.0.1:6379> TTL HDC15
(integer) -1
127.0.0.1:6379>

Two more commands related to
EXPIRE are TTL and PERSIST.

TTL is time to live for a key in seconds.
There is a PTTL, which returns
milliseconds.

PERSIST will remove the expiration on
a volatile key and make it persistent.

Note that the second time I call TTL, I
get a negative return value. This is a
pattern common to redis. Negative
return values are in-band signaling of
error conditions. Errors are specific to
the command called, in the case of
TTL -1 means the key exists, but is not
volatile. I find this error handling a bit
of a rough edge of redis, but most
libraries you use should handle things

127.0.0.1:6379> SET HDC15 "Heartland Developer Conference 2015"
QUEUED
127.0.0.1:6379>

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> MULTI
OK
127.0.0.1:6379>

MULTI & EXEC

127.0.0.1:6379> EXPIRE HDC15 5
QUEUED
127.0.0.1:6379> 127.0.0.1:6379> EXEC
1)OK
2)(integer) 1
127.0.0.1:6379>

We can make that a bit better with
transactions.

In redis, transactions are isolated and
atomic. Commands are processed
serially without interruption by other
clients, and are either all committed, or
none are.

There are more commands for
transactions, but these are the core
two.

Write-Through Caching

My second use case is more caching,
but instead of a typical read-through
cache, we will create a write-through
cache.

Write-Through Caching

SELECT *
FROM `posts`
ORDER BY `created`
DESC LIMIT 10

There are many instances in app
development when you need to show
the N most recent X. 10 most recent
posts, for example. The best
implementation for timely and accurate
data involves cache creation and
invalidation on write.

With redis, this is easy to implement
through lists.

Lists

• Ordered list of values
• Push & pop from head or tail
• Capable of arbitrary insertion

list.append ➡ RPUSH
list.count ➡ LLEN
list.pop ➡ RPOP

Python 2 ➡ redis

The redis list data structure behaves
like a list mixed with a queue from
most programming languages.

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> LPUSH posts 20
(integer) 20
127.0.0.1:6379>

LPUSH, LRANGE & LTRIM

127.0.0.1:6379> LRANGE posts 0 4
1) "20"
2) "19"
3) "18"
4) "17"
5) "16"
127.0.0.1:6379> 127.0.0.1:6379> LTRIM posts 0 2
OK
127.0.0.1:6379>

To implement this cache, we would
call LPUSH and LTRIM when inserting
a new post into the database.

LPUSH prepends the post ID onto the
list, and LTRIM reduces the length of a
list.

Note that LRANGE and LTRIM use
start and stop indexes, not start and
length. Negative indexes are allowed,
so -1 is the last item of the list, -2
second to last, etc.

This means that while RPUSH exists
for appending to a list, there is no
RRANGE or RTRIM, you just have to
do the math.

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> LREM posts 0 18
(integer) 1
127.0.0.1:6379>

LREM & LLEN

127.0.0.1:6379> LRANGE posts 0 4
1) "20"
2) "19"
3) "17"
4) "16"
5) "15"
127.0.0.1:6379> 127.0.0.1:6379> LLEN posts
(integer) 19
127.0.0.1:6379>

So, what happens if we delete a post?
We can either ignore it, if that’s a rare
event, and just have a short page, or
we can use LREM.

Another quick list command is LLEN,
which will get you the length of the list.
As you see here, it’s gotten shorter by
1 because of the LREM.

Write-Through Caching

Post

Dog Dog Dog

Area Breed Area Breed Area

Now, keep in mind that this is a very
simple case. Adding an index to the
posts table would be far less work and
very fast. A more realistic case is
where it’s computationally expensive.

At Pack we have posts which belong
to dogs, which belong to packs.
These posts need to show up in the
feed of every pack. Looking those up
through the join table every page load
is more expensive, so the easy
solution was a write-through cache.

Queues

I’m going to touch quickly on a third
use case, which is queues.

Ruby 
https://github.com/resque/resque  

Python  
http://python-rq.org/  

PHP 
https://github.com/chrisboulton/php-resque  

golang  
https://www.goworker.org/

Queues

Redis has inspired a number of simple work
queues. These are great for web apps, they let
you take expensive processing out of the web
app and move it into an isolated service,
running on a completely different set of servers
if you like.

At pack we use this for sending mail,
processing images, updating the search
database, all kinds of things that we don’t want
to slow down the web service with.

Redis is not a specific queueing backend like
RabbitMQ, but the combination of lists, BLPOP,
EXPIRE and atomic transactions make it a
reasonable replacement, and it’s “free” since
we are already using redis for other chores like
caching.

I should point out that antirez is currently
building disque, which I hope will be as easy to
use as redis, but provide better durability and
message queue features.

Counting Stuff

My fourth case today is counting stuff.

How many times has that file been
downloaded today? How about this
week?

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> SET downloads:2015:09:10 "11"
OK
127.0.0.1:6379>127.0.0.1:6379> INCR downloads:2015:09:10
(integer) 12
127.0.0.1:6379>

127.0.0.1:6379> GET downloads:2015:09:10
"11"
127.0.0.1:6379>

INCR & DECR

127.0.0.1:6379> DECR downloads:2015:09:10
(integer) 11
127.0.0.1:6379>

Even though the values in redis are
strings, redis offers some tools that
treat them as numbers.

INCR and DECR are two of those. If
INCR by can coerce the string into an
integer, it will increment it, if not it will
error out. Same thing for DECR.

There are also INCRBY and DECRBY
for counting by more than one, and a
INCRBY for floats.

Notice the use of colon (:) in the key.
This is a common pattern in the redis
world to create a sense of
“namespaces”. There is nothing
special about the colon, it’s just a
convention. You could as easily use
underscores or something else.

Counting Uniques

Counting stuff is cool, but you know
what’s cooler? Counting unique stuff.

Say you want to count the number of
unique visitors on your website THIS
VERY MINUTE.

127.0.0.1:6379> SMEMBERS visitors:13:30
1) "192.168.1.12"
2) "192.168.1.36"
127.0.0.1:6379>

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> SADD visitors:13:30 192.168.1.12
(integer) 1
127.0.0.1:6379>127.0.0.1:6379> SADD visitors:13:30 192.168.1.37
(integer) 1
127.0.0.1:6379>

127.0.0.1:6379> SCARD visitors:13:30
(integer) 2
127.0.0.1:6379>

SADD, SCARD & SMEMBERS

127.0.0.1:6379> SADD visitors:13:30 192.168.1.12
(integer) 0
127.0.0.1:6379>

To accomplish this, we will use the set
data type. Sets are sets. They are
unordered, but are guaranteed to hold
only one of any given value.

SADD will add a value to a set. It
won’t complain if the value is already
in the set.

SCARD gets the number of users we
consider “online”.

We would also want to set an EXPIRE
after each SADD so that the sets don’t
hang around from day to day.

SDIFF, SINTER & SUNION

x

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> SDIFF visitors:2015:09:10 visitors:2015:09:09
1) "192.168.1.37"
127.0.0.1:6379>127.0.0.1:6379> SINTER visitors:2015:09:10 visitors:2015:09:09
1) "192.168.1.12"
127.0.0.1:6379> 127.0.0.1:6379> SUNION visitors:2015:09:10 visitors:2015:09:09
1) "192.168.1.12"
2) "192.168.1.126" 
3) "192.168.1.37"
127.0.0.1:6379>

192.168.1.12
192.168.1.126

192.168.1.12
192.168.1.37

visitors:2015:09:09 visitors:2015:09:10

That’s pretty useful, but there are other
set operations which make it even
better.

Want to know who visited today but
not yesterday? Count at the day level
and use SDIFF. It can work across
multiple sets too, so you can see who
visited today but no other day this
week.

Want to know everyone who visited
today or yesterday? Use SUNION.

Want to know who visited yesterday
AND today? SINTER can do that.

SDIFF, SINTER & SUNION

x

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> SDIFF visitors:2015:09:10 visitors:2015:09:09
1) "192.168.1.37"
127.0.0.1:6379>127.0.0.1:6379> SINTER visitors:2015:09:10 visitors:2015:09:09
1) "192.168.1.12"
127.0.0.1:6379> 127.0.0.1:6379> SUNION visitors:2015:09:10 visitors:2015:09:09
1) "192.168.1.12"
2) "192.168.1.126" 
3) "192.168.1.37"
127.0.0.1:6379>

That’s pretty useful, but there are other
set operations which make it even
better.

Want to know who visited today but
not yesterday? Count at the day level
and use SDIFF. It can work across
multiple sets too, so you can see who
visited today but no other day this
week.

Want to know everyone who visited
today or yesterday? Use SUNION.

Want to know who visited yesterday
AND today? SINTER can do that.

x

127.0.0.1:6379> SUNIONSTORE visitors:2015:09 visitors:2015:09:10
visitors:2015:09:09
(integer) 3
127.0.0.1:6379>127.0.0.1:6379> SCARD visitors:2015:09
(integer) 3
127.0.0.1:6379>

SDIFF, SINTER & SUNION

Each of these has a STORE variant, so
you can run the union, difference or
intersection, store it into another set,
and run things like SCARD on it.
These are good for rolling up stats and
can be executed in a transaction to
keep it clean.

Counting Uniques
(again)

Redis offers another way to count
uniques.

Redis supports a probabilistic data
structure called HyperLogLog, which
estimates the cardinality of a set using
a tiny fraction of the memory. In
exchange for this tiny memory usage,
you get loose some precision. In the
case of redis, the standard error is less
than one percent.

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> PFADD visitors:2015:09:10 192.168.1.12
(integer) 1
127.0.0.1:6379>127.0.0.1:6379> PFADD visitors:2015:09:10 192.168.1.37
(integer) 1
127.0.0.1:6379>

PFADD & PFCOUNT

127.0.0.1:6379> PFADD visitors:2015:09:10 192.168.1.12
(integer) 0
127.0.0.1:6379>127.0.0.1:6379> PFCOUNT visitors:2015:09:10
(integer) 2
127.0.0.1:6379>

PFADD acts just like SADD, and
PFCOUNT acts like SCARD.

There is also a PFMERGE which is like
SUNIONSTORE, merging the
HyperLogLogs into a new key.

Leaderboards

Leaderboards are something you
might think only applies to games, but
the same concept can be used for
sorting comments, posts, etc. by
popularity or age.

Redis has sorted sets. This data
structure is like a set in that it can only
contain one of each value, but it is
ordered. Every value must have an
integer score which is used to
determine the order of the set. When
two values have the same score,
ordering is done lexicographically.

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> ZADD leaderboard 5 "1"
(integer) 1
127.0.0.1:6379> ZADD leaderboard 50 "2"
(integer) 1
127.0.0.1:6379> ZADD leaderboard 100 "3"
(integer) 1
127.0.0.1:6379>

ZADD, ZREVRANGE & ZREVRANK

127.0.0.1:6379> ZREVRANGE leaderboard 0 5
1) "3"
2) "2"
3) "1"
127.0.0.1:6379>

We use this for our street team
leaderboard. The score is a value
derived from the interactions our street
team members have on the website.
For instance commenting on posts,
inviting users, etc. Calculating it
covers many tables, so it’s not great
for calculating on read.

The core sorted sets commands
ZADD, ZREVRANGE and ZREVRANK.

ZADD key score value

ZREVRANGE returns the requested set
members, sorted from high to low.

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>

ZADD, ZREVRANGE & ZREVRANK

127.0.0.1:6379> ZREVRANGE leaderboard 0 "1"
1) "3"
2) "2"
127.0.0.1:6379>127.0.0.1:6379> ZREVRANK "1"
(integer) 2
127.0.0.1:6379>127.0.0.1:6379> ZREVRANGE leaderboard 1 1
1) "2"
127.0.0.1:6379>

But what if the active user isn’t in the
top 10? Where’s user 1?

We can get their exact rank with
ZREVRANK, then view a “window” of
scores above and below the user with
ZREVRANGE.

Chat

Redis has a simple, stable, fast
implementation of pub/sub. One use
case is for event coordination. If you
have multiple websocket app servers,
you’ll want to make sure you deliver
the event to the client regardless of
which websocket backend they are
connected to.

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> SUBSCRIBE chat
Reading messages...
1) "subscribe"
2) "chat"
3) (integer) 1

SUBSCRIBE & PUBLISH

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> PUBLISH chat "Hey!"
(integer) 1
127.0.0.1:6379>

3) (integer) 1
1) "message"
2) "chat"
3) "Hey!"

With redis pub/sub, this is easy.

Each websocket server connects to
the chat channel with SUBSCRIBE.

Then, when an event happens, the
origin uses PUBLISH to send it to all
connected servers, which push it
down to their clients.

When you issue the SUBSCRIBE
command, you enter a streaming
mode in which only a subset of redis
commands are valid. However, in this
mode you can change your channel
and pattern subscriptions, so it’s easy
to change channels without
disconnecting and potentially losing
messages.

Object Storage

Most of these examples have been
about adding redis onto your stack for
single attributes of objects, or
serialized objects at the most. But you
can use redis to store some or all the
members of your objects or structs if
you want to using hashes.

Object Storage

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> HMSET user:1 name John email
john@velvetcache.org password da39a3ee5e6b4b0d3
OK
127.0.0.1:6379>127.0.0.1:6379> HGETALL user:1
1) "name"
2) "John"
3) "email"
4) "john@velvetcache.org"
5) "password"
6) "da39a3ee5e6b4b0d3"
127.0.0.1:6379>

class User {
 name
 email
 password
}

In redis, hashes are equivalent to what
other languages might call a
dictionary, map or associative array.
It’s essentially a nested key-value store
on a single key in redis.

Say you have this pseudocode user
class, with a name, email and
password.

We can store this class with HMSET,
an retrieve it with HGETALL.

The downside to this is that you need
to maintain your own indexes. If I
want to be able to find a user by id, I
can by using the id to build the key. If
I want to find them by email, I will have
to create a sorted set, or just individual
keys.

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> HMSET user:1 name John email
john@velvetcache.org password da39a3ee5e6b4b0d3
OK
127.0.0.1:6379>

HMSET & HGETALL

127.0.0.1:6379> HGETALL user:1
1) "name"
2) "John"
3) "email"
4) "john@velvetcache.org"
5) "password"
6) "da39a3ee5e6b4b0d3"
127.0.0.1:6379>

In redis, hashes are equivalent to what
other languages might call a
dictionary, map or associative array.
It’s essentially a nested key-value store
on a single key in redis.

Say you have this pseudocode user
class, with a name, email and
password.

We can store this class with HMSET,
an retrieve it with HGETALL.

The downside to this is that you need
to maintain your own indexes. If I
want to be able to find a user by id, I
can by using the id to build the key. If
I want to find them by email, I will have
to create a sorted set, or just individual
keys.

local new_user_id = redis.call("INCR", "users")
redis.call("HSET", "user:" .. new_user_id, "name", KEYS[1])
redis.call("HSET", "user:" .. new_user_id, "email", KEYS[2])
redis.call("HSET", "user:" .. new_user_id, "password", KEYS[3])
redis.call("ZADD", "user:emails", new_user_id, KEYS[2])

save-user.lua

So let’s handle that index work by
using lua scripting. Lua is a fast,
embeddable scripting language. It
shows up a lot in game development,
and antirez likes it, so it’s embedded in
redis. It’s a unique language, but it
can feel a lot like JavaScript.

I’m not going to try to cover all of Lua,
because I don’t know a lot of it myself.
However, we can at least execute
some redis commands.

class User {
 name
 email
 password
}

SCRIPT LOAD & EVALSHA

jmhobbs@venera:~ ✪ jmhobbs@venera:~ ✪ redis-cli SCRIPT LOAD "$(cat save-user.lua)"
“3cb690bebf59b2904446cbae41804ba607103dd3"
jmhobbs@venera:~ ✪ jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379> EVALSHA 3cb690bebf59b2904446cbae41804ba607103dd3
3 John john@velvetcache.org secret
(nil)
127.0.0.1:6379>127.0.0.1:6379> KEYS user*
1) "user:1"
2) "users"
3) "user:emails"
127.0.0.1:6379>

To load a lua script into the script
cache, you use the SCRIPT LOAD and
pass it the content of the script, which
we load here via command
substitution.

This returns a SHA1 hash of the script,
and the script will remain in the redis
script cache unless removed with
SCRIPT FLUSH.

We can then use this hash to execute
the script with EVALSHA, and it does
it’s magic.

Who’s Nearby?

Something coming soon to Redis is
geospatial indexing. Previously, this
was an extension you could compile
into a special version of redis, now it’s
been brought into the unstable and
should come out soon.

We can use this to find who is online
near us, for a mobile messaging app
perhaps.

Redis geo commands are super simple
to use compared to many RDMS geo
extensions. Definitely better than
MySQL.

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> GEOADD location -96.1074167 41.1812599 jmhobbs
(integer) 1
127.0.0.1:6379>

GEOADD, GEORADIUS & GEODIST

127.0.0.1:6379> GEOADD location -96.1055351 41.182195 alexpgates
(integer) 1
127.0.0.1:6379>

(unstable)

127.0.0.1:6379> GEORADIUSBYMEMBER location jmhobbs 5 mi
1) "jmhobbs"
2) "alexpgates"
127.0.0.1:6379>127.0.0.1:6379> GEODIST location jmhobbs alexpgates mi
"0.11702141329908003"
127.0.0.1:6379> GEODIST location jmhobbs alexpgates ft
"617.8715265050572"
127.0.0.1:6379>

So, I’m here at HDC, so I use GEOADD
to show that.

My friend Alex is over across the street
at the Tropical Island Bar & Grill.

GEORADIUSBYMEMBER answers
what users are near me, say within five
miles.

There is also a generic GEORADIUS
for looking up arbitrary lat/lng.

GEODIST can tell me exactly how far
away Alex is, in miles, feet or various
metric units

Autocomplete

Let’s look at one last use case,
autocomplete. This is a great
application of the speed and strengths
of redis, and one we just recently
implemented at Pack.

Autocomplete

As part of our comment system, we
wanted to add the ability to mentions
of your friends. We wanted this to be
fast, so we built it using sorted sets
and go.

One of the hidden features of sorted
sets is that values with equivalent
scores are sorted lexicographically.
We can leverage that to present
autocomplete values quickly and
cleanly.

Autocomplete

class User {
 name
 email
 password
}

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> ZADD names 0 J
(integer) 1
127.0.0.1:6379> ZADD names 0 Jo
(integer) 1
127.0.0.1:6379> ZADD names 0 Joe*
(integer) 1
127.0.0.1:6379>

For every word in our autocomplete
data set, we add it to the ZSET with a
score of 0, building it up one letter at a
time. When we have the complete
word, we end it with a delimiter, in our
case we choose the asterisk.

Autocomplete

class User {
 name
 email
 password
}

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> ZRANGE names 0 -1
 1) "B"
 2) "Bi"
 3) "Bil"
 4) "Bill*"
 5) "J"
 6) "Jo"
 7) "Joe*"
 8) "Joh"
 9) "John*"
10) “Jon"
etc…

We do this for every word in our data
set.

Autocomplete

class User {
 name
 email
 password
}

jmhobbs@venera:~ ✪ redis-cli
127.0.0.1:6379>127.0.0.1:6379> ZRANK names Jo
(integer) 5
127.0.0.1:6379>127.0.0.1:6379> ZRANGE names 6 -1
1) "Joe*"
2) "Joh"
3) "John*"
4) "Jon"
5) "Jona"
6) "Jonat"
7) "Jonath"
8) "Jonatha"
9) "Jonathan*"

Now, we can use ZRANK to find the
index of whatever the user has typed,
Jo for example.

We then use ZRANGE to get all of the
entries from our item to the end, and
filter for entries that match our prefix,
and end in an asterisk.

If we implement this in code, we would
loop over ZRANGE reading blocks of
50 until our prefix stopped matching.

In production, we created a serialized
format for our result rows which
included the user id and full name so
we could save the round trip to the
MySQL database and show results
immediately.

Replication

Ok, that’s all the use cases. Let’s look
briefly at replication in redis.

• One Master, one or more slaves
• Asynchronous
• Non-blocking (mostly)
• Read-only (mostly)
• Delivery to slaves not guaranteed
• You should turn disk persistence on Master
• SLAVEOF, SYNC

Replication

Non-blocking except slaves during
initial sync. You can configure to use
an old dataset during that time.

Read only by default, but it’s currently
possible to have writable slaves that
desync.

Writes on the master are accepted
regardless of slave status. Starting
with Redis 2.8 you can have the
master reject writes if slaves are not
connected or are lagging to far behind.

Cluster

Redis cluster is a way to run redis and
shard the data across multiple nodes,
and keep data available even when
nodes in the cluster are down.

• Cluster communication is out of band
• Some caveats on multiple key operations
• Master slave model for failover
• Not strongly consistent
• Synchronous writes are possible with WAIT

Cluster

For multiple key operations, keys have
to belong to the same “hash slot”,
which is how redis divides keys
between nodes. Keys can be coerced
into the same hash slot with hash tags.

Every hash slot needs a master and at
least one slave for failover, otherwise
the cluster will halt.

Clustering is not, by default, strongly
consistent. You have the same issue
as replication with lost writes.

The WAIT command can give you
synchronous writes, but it’s not
guaranteed that all slaves have gotten
the write.

Sentinel

Redis sentinel is a second application
which provides high availability for
redis.

• Monitors master and slaves
• Notifications to sysadmin or other programs
• Automatic failover of master
• Provides configuration for nodes
• Is a distributed system itself

Sentinel

Sentinel constantly checks on the
health and synchronization status of
your master and slaves.

It can notify your ops team if things
aren’t healthy.

It can promote a slave to master, and
reconfigure the other slaves.

It is the single source of truth for
replication.

Sentinel itself is distributed, and you
should spread out your instances.
Sentinel instances require a quorum to
decide on master health. You need
more than two instances to prevent
immediate split-brain. Sentinels can
run on client boxes too.

Who uses redis?

Social proof is a driving force in tech
adoption, so who has been using redis
in the last six and a half years of its
life?

• Instagram
• Weibo
• Twitter
• Tumblr

Who uses redis?

Instagram has been a user of redis for
a long time, and they have a number of
blog posts about their big
deployments of redis.

Weibo is a massively popular Chinese
microblogging platform, like Twitter.
They have a caching deployment of
redis they like to brag about online,
with over 200 nodes in it.

In 2014, Twitter reported they were
using 105TB of RAM and achieving
39MM QPS.

In 2012, Tumblr reported using redis
for cache and for ephemeral
notifications, with plans to expand
usage. Hundreds of redis instances on
tall servers.

http://velvetcache.org
http://twitter.com/jmhobbs

john@velvetcache.org

Thank You

I’ll be posting the slides online, you
should be able to find them on twitter
or my website. I’ll also post links to
resources I used for this presentation.

If anyone has any final questions,
please ask.

